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Electromagnetic Model of a Planar
Radial-Waveguide Divider/Combiner
Incorporating Probes

Marek E. Bialkowski, Senior Member, IEEE, and Vesa P. Waris, Student Member, IEEE

Abstract— A field matching technique is used to develop an
electromagnetic model for an A/ -way planar radial-waveguide
divider/combiner incorporating probes. Based on this model, a
broadband operation of the radial divider/combiner is investi-
gated. The application of the developed model is shown in a design
example of a 20-way power divider.

* 1. INTRODUCTION

ICROWAVE power. combiners/dividers are frequently
used in microwave systems in which power division
or combination is required. They play a vital role in the
competition of solid-state power amplifiers with their coun-
terparts-—tube amplifiers. Many times in the past, waveguide
transmission-line combiners, including rectangular, coaxial,
conical, and radial [1]—[6], bave been used, but only a few
have been modeled so far. Most of the developed models are
of the qualitative type, as they give only a general ideal of the
waveguide combiner/divider operation. Quantitative models
based on a full-wave analysis have been obtained only for rect-
angular waveguide combiners of the Kurokawa type [2], [3].
This paper reports on a full wave analysis of a planar radial-
waveguide power combiner/divider which incorporates probes.
Based on this analysis, an electromagnetic model of the device
is obtained. This model is-used to study the optimal dimensions
of the radial power divider for its broadband operation.

II. FORMULATION

Fig. 1 shows the configuration of the analyzed radial power
divider/combiner. The device consists of a cylindrical cavity
with one central probe and M equispaced identical peripheral
probes. The probes are formed by conducting posts, loaded
with discs at their ends. For symmetry reasons, peripheral
probes are assumed to be identical in shape and size. The
central probe dimensions may differ from those of the periph-
eral probes. The probes are energized from gaps in the posts
which are located between the cavity floor and the discs.

In practice, the probes may also be energized from coaxial
entries, as shown in Fig. 1(c), diagram (i). However, since
there exists an equivalence between the excitation from the
coaxial entry and the gap in the post [12], there is no
need to consider two types of excitation separately. In the
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theoretical approach, the coaxial entry of Fig. 1(c) (i) is
replaced by an equivalent gap of Fig. 1(c) (ii). Note that
the power divider/combiner described in the form. above is
regarded as a passive device. Active devices, if required,
can be attached from the outside. To include active devices
(i.e., Impatt or Gunn diodes), the probe configuration needs
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Fig. 1. Configuration of an M -way radial-waveguide combiner/divider in-
corporating probes. (a) top view, (b) side view (c) probe configurations:

(i) probe energized from a coaxial line, (ii) probe energized from an equivalent
gap in the post, (iii) probe suitable in the design of active power combiner.
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to be modified from the one shown in Fig. 1(c) (i) to the
one shown in Fig. 1(c) (iii). From a theoretical point of
view, this modification is easy to accommodate. The required
modification is explained in further analysis while producing
the expressions for the fields in regions surrounding the probes.'

The ideal operation of the passive power combiner/divider
can be described as follows. In the power divider mode, the
power is fed to the central probe and is equally divided without
any loss between the match-terminated peripheral probes. In
the power combiner mode, the power is fed in-phase to the
peripheral probes and is collected without any loss by the
match-terminated central probe. It is apparent that the ideal
operation calls for the impedance match of the central and
peripheral probes. This match can be obtained by choosing
proper dimensions of the central and peripheral probes, and
of the cavity.

To investigate the broadband match conditions, a full-
wave analysis of this device is performed. An alternative
analysis, which includes approximations of the sectorial guide
containing the peripheral probe by a rectangular waveguide,
is described in [13].

The present analysis is confined to the cases when the
peripheral probes are fed in-phase or terminated in the same
loads. To analyze the power divider/combiner, the admit-
tance— rather than the scattering—matrix approach is chosen
(no need for specifying characteristic impedances). However,
once the admittance matrix parameters are known, conversion
to the scattering parameters is straightforward.

For the case when the peripheral probes are fed in the
same way or are terminated in identical loads, the admittance
matrix parameters of the device are defined by the following
equations

In =YooVo + (Yo1 + -+ You)Va

L=Y1W+Tu+- - +Yiu)V1 (1a)
which can be rewritten in the form
Iy = YooVo + MYy V1
L =Y, W+YY11 (1b)

where V; is the voltage applied in the gap #0 (in the central
probe), V1 is the voltage applied in the gap #1 (in the periph-
eral probes), and Iy, I; are the resulting currents in gaps #0
and #1.

Note that YY7; in (1b) is given as the sum of Yiq,
Y12, -+, Y1ps. Equations (1a) and (1b) show that in order to
obtain the admittance matrix for the symmetric radial power
combiner/divider for the case when the peripheral probes are
loaded or energized identically, two field problems have to be
solved: 1) when the central probe is energized by voltage V,
and the peripheral probes are short-circuited; and 2) when the
peripheral probes are energized by the same voltage V1 and
the central probe is short-circuited.

Assuming that the parameters Ygo, Y10 Yo1, and YY1 are
found, the input admittance seen at the central probe. can be
determined by using standard circuit analysis.

The problem becomes more complicated when the pe-
ripheral probes are energized or terminated arbitrarily. In
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this case, all the individual admittance matrix elements Yi1,
Yia, -+, Yips in (1), rather than their sum Y'Yi1, have to be
determined. This can be accomplished by solving the field
problem for the situation when probe #1 is energized by
voltage V; and all the remaining probes inside the cavity are
short-circuited. Since expressions describing the interactions
between the individual probes are derived in the Appendix
for an arbitrary location and excitation, the extension of the
present theory to this general case should be straightfor-
ward. The only new complication is the increased number
of unknowns (namely, the number of expansion coefficients
describing the local fields surrounding the peripheral probes) to
be determined. This complication can, however, be overcome
by solving M problems exhibiting M-fold axial symmetry
for which the number of unknowns can be reduced. These
problems are defined by the conditions that the central probe
is short-circuited and the peripheral probes k = 1,..-, M are
excited by voltages Vi, = exp(ido(k — 1)(p — 1)), where
¢o = 360 deg/M and p = 1,---, M. Note that the sum of
Vip versus p divided by M is equal to 1 only for £ = 1 and
otherwise is equal to 0. It is apparent that the superposition
of the solutions to the new problems is equivalent to the
solution of the initial problem with only one peripheral probe
excited. The extension of the present theory to this case is
not considered here but is a subject of further investigations
in [14], [16].

For the peripheral probes terminated in identical loads
characterized by the admittance Y7, the input admittance at
the central probe Y, is given by

Yin = Y00 — MY01Y10/(YY11 + Y1) )
Having determined the input admittance, the input reflection
coefficient at the central probe, with respect to an arbitrary
characteristic admittance Y., can easily be determined and is
given by

Ty = _(Kn - cl)/(Y;n + Ycl) . (3)

From the earlier discussion of the ideal operation of the
power combiner/divider, it is apparent that for the perfect
combiner/divider, T;,, has to be zero for the case when
the peripheral probes are terminated in their characteristic
admittances Y.o.

III. ANALYSIS

Currents I and I7 necessary to determine circuit parameters
Yix, and therefore the value of T, in (3), can be obtained by
using the relationship between the surface currents and the
magnetic fields surrounding the probes. Iy and Iy are related
to the magnetic field tangential components at the surfaces
enclosing gaps #0 and #1 and are given by expressions [7]

1 1 ho+g0/2 p2w

Io= — — H T:C7y7¢)d’¢dy
°7 go 2m ho—go/2 J0 3

1 1 h1+g1/2 2% ‘ )d d
n=-5/ Hia(ry = d,y, 9) dy dy
'Taom hi—g1/2 Jo al(mn

@
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The required magnetic field components in (4) can be de-
termined by solving a suitably defined field problem for the
divider/combiner.

It will be assumed that the field in the cavity is due to the
uniform electric field Ey = —V,/go, applied to the surface
enclosing the gap #0 in the central probe, and the uniform
electric field Fy = —V} /g, applied to the surface enclosing
gap #1 in the peripheral probes.

To determine the field in the cavity, a field matching tech-
nique can be used. To apply this technique, the entire cavity
structure is divided into a number of cylindrical volumes: a
cylindrical volume of radius b surrounding the central probe,
M cylindrical volumes of radius a surrounding the peripheral
probes, and a cavity region outside the cylindrical volumes
containing the probes.

The cylindrical volume containing the central probe is
further divided into a cylindrical volume I below the disc, and
volume II above the disc. Similarly, each cylindrical volume
containing a peripheral probe is divided into a cylindrical
volume III below the disc, and volume IV above the disc.

It is assumed that the individual cylindrical volumes, intro-
duced above, can be filled with different uniform dielectrics,
characterized by the dielectric constants €y, €3. €3, €4 for
volumes I, II, I1I, and IV, for ¢ for the cavity region, respec-
tively.

In the next step of the field matching procedure, it is required
to write general expressions for the fields in volumes I, II, III,
IV and match the tangential components of these fields to the
cavity field, at the common cylindrical boundaries r = b and
T = a.

The field components inside the volumes I, II, IIL, IV can
be considered as internal, and those outside these volumes can
be considered as external.

In order to simplify the analysis, the fields in the vicinity
of the central and peripheral probes will be approximated by
axially symmetric fields. This approximation should produce
reasonably accurate results for the probes having dimensions
a and b much smaller than the wavelength.

The approximation of the actual local field by an axially
symmetric field implies that the y-component of the electric
field and the ¢-component of the magnetic field are the
only tangential components of the electromagnetic field at
the cylindrical surfaces » = b and r; = a. Therefore, in
further analysis, only expressions for these two components
are derived.

A. Field Expansions—Probe Regions

Expressions for the fields in volumes I, II, III, IV can be
obtained by following the analysis in [7]-[9]. Note, however,
that as opposed to [7], volumes II and IV do not contain posts.
Therefore, to describe the fields in volumes IT and IV, new
functions have to be introduced.

Following the analysis in [7], and by introducing the re-
quired modifications, the y-component of the electric field and
the ¢-component of the magnetic field can be shown to be
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given by
= 2 (SB?;: cos (k?%)y)
: D1nHJ(r,<}>,r, b, c) i ElnHH(r,gl),r, c)]
%; os (GLY) Z—lﬂf’;)
1

HJP( D, 7 b, c) +E1HHHP(F£3>,T, b)]

cos(k(z)y Bz))DQ JJ( ),r,b>

[
BT = z::

H$I= COS( (- B ))-Z_ZJF%
. D2,JJP (FSP, r, b) )
where
HJ(I‘( r b, c)
A 1)) 0 1)
i)~ (190

H® (Pu) )

H(FS), T, c) =

Jo(TP
JJ(F&L?),T, b) - TTEP%T;g

(k1,21), (k2,Z2) are the wave number and the intrinsic
impedance for volumes I, II.

aHJ(rS), r,b, c)

HIP(TM,r,b,c) =

6(1"53)1") ’
AHH(TL r ¢
8JI(TP,rb
1(/11) = B ) g(,i) = Fz are eigenvalues ,
r)” — g2 y<1>2
T®" = k2 — k@, Jo 1, Jy, H

are Bessel and Hankel function of Oth and 1st order, ¢,, is
the Neumann factor.

El, =V, cos(k(l)hl) s1n(k(1)gl/2)/(k(1)gl/2)

are expansion coefficients for the electric field £, = —V,/go
in the gap #0. D1,, D2, in (5) are the field expansion
coefficients, yet to be determined.
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Expressions for the fields in volumes III and IV can be
obtained by introducing the following substitutions in expres-
sions (5):

By — Bs, By — By,
ho— hi, ki —ks, ka—ks Z1—Z3, Zp— Zy,
KD — kD, K —k®, TO 1@, 1@ T,

El,—- FE3,, Dl1,— D3, D2,— D4,.

b_>a'a C—>d, go — 41,

The above-derived expressions for the field components are
valid for the case when the probes are of type (ii) [Fig. 1(c)]
with empty regions above the discs. These expressions, how-
ever, can easily be extended for the case of probe type
(iii) [Fig. 1(c)] with the post above the disc. The required
modifications are straightforward. To include the post in the
region above the disc, the functions JJ and JJP describing
the y-component of the electric field and the ¢-component of
the magnetic field in regions II and IV have to be replaced by
functions H.J and HJP, respectively.

B. Field Expansions—External Region

To determine the external tangential field components at the
interfaces » = b and r; = a, expressions for the electric and
magnetic fields due to a single, arbitrarily positioned probe
in a radial cavity, derived in the Appendix, can be used.
Now, those expressions have to be extended to the case of
M symmetrically positioned peripheral probes and one central
probe. To simplify derivations, it is assumed that one of the
peripheral probes is positioned at r = 7o, ¢ = 0. In this case,
the combiner/divider configuration becomes symmetric with
respect to ¢ = 0, and for the assumed type of excitation the
fields become even functions of ¢. As a result, the exponential
terms exp(—jp¢) in the azimuthal expansions for the electric
magnetic field components (A6), (A7) are replaced by cos(p¢)
terms.

The other modification comes from the M-fold symmetry
of the divider/combiner. Because of the M-fold symmetry of

the device and its excitation, all the azimuthal harmonics in

expressions for the electric and magnetic fields inside the radial
cavity which do not exhibit the M -fold symmetry disappear.
This implies that in the term Qn, which appears in expressions
(A8)—(Al11), only harmonics of the order p = 0, M, 2M, etc.,
have to be retained.

Having exploited all the symmetries of the radial
combiner/divider, derivations for the expressions for the
y-component of the electric field and the ¢-component of the
magnetic field at the cylindrical boundaries r = b and r1 = a
become straightforward.

For the central probe (at r = b),

1)

Ey= Z f—gﬂ [A,UU(n) + C,VV{(n)] cos(kyny)
n=0
Ho = i % 7 B A UUP(n) + CoV'V P(0)] cos(hyny)

0

n

©®)

where k, Z; are the wave number and intrinsic impedance for
the cavity region outside the cylindrical volumes containing
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the probes. The remaining symbols are defined as follows:

U(n) = HP(Tob) — Jo(Tnb)HS (T R)/Jo(TnR) ,
VV(n) = MJy(T,b)P,
P, = HSP(Tro) — Jo(Tnro) HS (TnR)/ Jo(TnR)
ouUU 1%
T2 =k’ kjn, byn = -
For the peripheral probe (at 1 = a),
By=Y = fon [ A, TT(n) + Ch QQ(n)] cos(kyny)
n= 0
Hpy = Z 6;; ZOI‘ [A,TTP(n) + C,QQP(n)] cos(kyny)
(7)
where
TT(n) = Jo(T'na)Pp, QQ(n)
= Jo(T'na)Qn + HP (Ta)
_ 8TT(n) _9QQ(n)
TTP(”) - 3(I‘na) 9 QQP(H) - B(Fna)

where Q,,, defined in the Appendix, is now modified to the
following form:

zH N(Tprim1)
- M Z

p=0,M,2M

eopjg(rnro)Hf) (TwR)/J,(TR)

where 7,,,1 is the distance between the middle positions of the
1st probe and the mth probe.

C. Field Matching

The remaining goal in the field matching procedure is
the determination of the field expansion coefficients. For
this purpose, continuity conditions for the tangential field
components are used. These conditions can be stated by the
following equations.

Atr = b,
Eyl 0<y<B
Ey(eaty =4 0 for Bi<y<B-DB
Ey'l B-B;<y<B
H¢=H¢(ewt) forOSySBl,
HIT = Hy(eat) for B — Bg‘ <y<B. )]
Similarly, at 7, = a,
| HI' = Hypy  for0<y < Bs
H)Y = Hyeary forB-Bys<y<B
Ey'™l 0<y< B3
Ey(ewt) = 0 for B3 < y < B-B, (9)
Ey"Y B-Bs<y<B.
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Equations (8) and (9) are in the functional form and are
therefore unsuitable for computations.

In order to convert (8) and (9) into algebraic equations,
which can be handled by a computer, the following integra-
tions are performed.

Atr =0,

B By
/ EY(eaty cos(kyy) dy = /0 Ey* cos(kyy) dy
0

B
+ / Ey™ cos(kyiy) dy
B—Ba

[=0,1,---
B! . B!
H i cos (kéﬁy) dy = H (o) COS (’f@(ﬁ%@ dy
0
m=0,1,-

B B
/ Hj;I cos (kz(/%) (y—(B~- Bz)) dy = / Hy(eat)
B—B; B—B,
. cos(k?%)(y — (B -~ Bz)) dy

p=0,1,.-. (10)

At r1 = a, the required integrations are analogous to those at
r = b, shown in (10). The necessary changes are obtained by
replacing indices 1, 2 in (10), corresponding to volumes I, II,
with new indices 3, 4 corresponding to volumes II, IV.

IV. RESULTS

Based on the theory described above a computer algorithm
in MICROSOFT Fortran for an IBM PC for the analysis of
an M -way radial waveguide divider/combiner was developed.
This algorithm was aimed at calculating the input admittance
(2) as observed at the central probe for the case when the
peripheral probes were loaded identically. In calculations, in-
finite expansions describing the fields in individual volumes I,
I1, I11, and IV and the cavity region were truncated. To evaluate
Oth and 1st-order Bessel and Neumann functions, polynomial
approximations [11] were used. Higher order Bessel and Neu-
mann functions were evaluated by using recursion formulas
[11]. For Bessel functions, the backward recursion formula
was used. For Neumann functions, the forward recursion
formula was applied.

In order to test the developed theory, and especially the
validity of the approximation that the actual fields in regions I,
II, III, and IV surrounding the probes are axially symmetric
fields, a two-probe divider was built. The device included
a radial cavity with one central probe and one peripheral
probe. For this device, a comparison between experimental and
theoretical results for the scattering parameters Spg (reflection
coefficient of the central probe) and S, (reflection coefficient
of the peripheral probe) could be performed.

Fig. 2 shows a comparison between theoretical and ex-
perimental values for Spo and S1; in the frequency band
from 8 to 12 GHz. Experimental results were obtained by
using probes (type (i) of Fig. 1(c)] fed from 50 © coaxial
lines. The reference plane for measurements was chosen at
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Fig. 2. Comparison between theoretical and experimental results for the
scattering parameters Spo and Si1 of the two-probe divider. Dimensions:
radial cavity R = 19.5 mm, B = 6.75 mm, central probe d = 0.65 mm,
b=23mm, B; = 1.65 mm, By = 1.10 mm, gg = By, hg = B1/2, pe-
ripheral probe ¢ = 0.65 mm, ¢ = 2.2 mm, By = 2.00 mm, By = 1.60 mm,
g1 = Bs, h1 = B3 /2, r, = 13.5 mm. Coaxial probe outer conductor radius
2.1 mm. Soo: theory , experiment - - -, S7;: theory -.-. -, experiment

the junction between the coaxial line and the radial cavity.
A Hewlett-Packard vector network analyzer HP 8510 B was
used in the measurements. Numerical results were obtained
by using the “equivalent gap” approach [see Fig. 1(c) (ii)].
In the latter case, results for Sgg and S;; were referenced
to the cylindrical surface enclosing the gap. Although good
agreement was obtained between the measured and calculated
reflection coefficient for both the central and the peripheral
probe, the numerical results for the central probe seem to be
in slightly better agreement with experimental data. This can
be explained by the fact that the region which surrounds the
central probe exhibits a better axial symmetry than the one
which surrounds the peripheral probe.

In the next step, the developed algorithm was applied to
the design of a 20-way radial divider. By using the developed
algorithm, a search for the device’s optimal dimensions was
initiated to produce the maximum value of the return loss for
the central probe, in the 10—-18 GHz band. In the search, the
initial dimensions were chosen as follows. In order to obtain
the dominant mode propagation (uniform with height radial
waves), the waveguide height was chosen to be less than
a half-wavelength, at 18 GHz. Distances between adjacent
peripheral probes were chosen approximately equal to half-
free-space wavelength, at the middle frequency of 14 GHz.
The distance between the peripheral probe and the cavity wall
was chosen approximately equal to a quarter-wavelength, at
the middle frequency of 14 GHz. It is worthwhile to mention
that to produce 20 frequency points for the input impedance
of the central probe, it took only several seconds of CPU time
of 486DX/33MHz PC.

In order to validate the theoretical result, the actual model of
the 20-way radial combiner/divider was built. This model in-
corporated coaxial probes which were energized from coaxial
entties.

Figure 3 shows the final dimensions of the radial
divider/combiner and a comparison between theoretical and
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Fig. 3. .Comparison between theoretical and experimental results for the
return loss (referenced to 50 §2) of the central probe-in the 20-way redial
divider. Radial cavity dimensions: B = 5.5 mm, R = 39 mm. Central probe
dimensions: ¢ = 0.65 mm, b = 1.8 mm, B; = 1.45 mm, By = 1.20 mm,
go = B1, ho = B;/2. Peripheral probe dimensions: d = 0.65 mm,
¢ = 1.8mm, By = 2.1 mm, B, = 1.50 mm, ¢; = Bs, h1 = B3/2.
Peripheral probe position r, = 34.1 mm.

Theory: peripheral probes terminated with 50 € loads -

, peripheral
probes terminated with 43 €2 loads - --, Experiment: 0--0--0.

experimental results for the values of the return loss observed
at the central probe (for the case when the peripheral
probes were terminated in 50  loads). Both theoretical -and
experimental results show a reasonably good quality match,
corresponding to the return loss of not worse than 17 dB
throughout the entire band from 10 to 18 GHz.

The discrepancy between theoretical and experimental re-
sults can be explained by different reasons, such as approxima-
tions. used in the theory or the difference in probe excitations.
It was, however, felt that the more obvious reason would be
the use of nonideal SMA match loads which terminated the
peripheral probes during measurements. '

To confirm this hypothesis, a separate set of measurements
on' SMA terminations was performed. These measurements
showed that the return loss for individual SMA terminations
ranged from 20 to 30 dB in the entire 10-18 GHz frequency

band. In order to investigate the influence of nonideal match -

terminations, another set of calculations was performed. Fig. 3
shows the return loss observed at the central probe when the
SMA loads are modeled by constant admittances of 43 €2 (this
corresponds to 22.5 dB return loss).

It can be seen that, in the last case, the maximum value
of the return loss did not change and was about 17 dB.
However, the shape of the curve representing the return loss
for the central probe had changed significantly. This simulation
showed that indeed nonideal terminations are likely to be
responsible for slight discrepancies between theoretical and
experimental results for the return loss of the central probe.

In order to further test the design of the 20-way divider,

-isolation measurements in the 10—18 GHz band between se-
lected probes were performed. Fig. 4 shows the experimental
results for the isolation between the 20th and 1st, 2nd, 5th, and
10th probe, respectively. It can be scen that, on average, the
isolation is better than 10 dB. The best isolation seems to be
between the 20th and the 2nd probe (for the probes which are
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Fig. 4. Measured isolation in the 20-way" radial divider. Isolation between
probes: 20th and 1st , 20th and 2nd -:-, 20th and 5th ___. _ , 20th
and 10th --*--*-_%x

interleaved by one probe). The worst isolation is between the
20th and the 10th probe, (the probes located on the opposite
sides of the divider).

V. CONCLUSIONS

A field matching technique for the analysis of a planar
radial-waveguide power combiner/divider has been presented.
Based on this analysis, a computer algorithm for determin-
ing the admittance matrix parameters of the radial com-

‘biner/divider has been developed.

This algorithm was tested on the example of a two-probe
device. Good agreement between theoretical and experimental
results for the reflection . coefficient of the central and the
peripheral probe was noted. In the next step, the algorithm was
used to determine the optimal dimensions of the 20-way power
divider for its operation in the 10—18 GHz frequency band.

‘The theoretical design was verified experimentally by building

the physical model of the 20-way radial combiner/divider.
Comparison of the results has shown good agreement be-
tween the developed theory and experiment. The analysis and
computer algorithm described here should prove useful to the
designers of radial-waveguide combiners/dividers in the future.

APPENDIX

Cylindrical Cavity with a Single Probe

Fig. 5 shows the top view of a radial cavity of radius R
and height B containing two cylindrical regions of different
radii a and b and of equal height B. Inside the cavity, there
is a probe which energizes the entire structure. The probe is
located inside a cylinder of radius a, which is positioned at
# = 19, ¢ = Po. It is assumed that the shape of the probe
and the form of excitation are such that the probe supports an
axially symmetric current having a y-component, possibly a
radial r;-component, and no ¢;-component.

From the theory of cavities [10], [15], it is known that under
the above-specified conditions, the ficld existing in the cavity
is described in terms of radial TM (to the y-direction) waves.
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Fig. 5. Configuration of a radial cavity with three cylindrical coordinate
systems used in the analysis of the fields radiated by an arbitrarily positioned
probe. :

In the analysis of the radial power combiner/divider, only the
y-component of the electric field and the ¢-component of the
magnetic field are required to be determined.

For convenience, three systems of coordinates—r, ¢,
y—associated with the cavity, r1, ¢1, y, associated with the
cylinder containing the probe, and 79, ¢, ¥, associated with
the second cylindrical volume of radius b, are introduced. The
field produced by the probe in the cavity can be considered
to be composed of two parts: 1) the field generated by the
probe in the absence of the side cavity wall: and 2) the field
scattered by the wall.

Let us assume that in the absence of the side cavity wall,
the current flowing on the probe generates a wave whose
y-component of the electric field is given by

Eyn(znc) = H(gz) (Fn"'l) Cos(k’yny> (Al)

where Hj is the Hankel function

kyn:%, 2=k - k2,.

Note that Eyp(incy is a constant function of ¢; in the local
coordinate system r1, ¢1, ¥, which is associated with the probe,
but may vary with ¢ in the global coordinate system r, ¢, y,
associated with the cavity.

When the cavity wall is introduced the radial wave gener-
ated by the probe is scattered by the cavity wall. Since F, ;)
is nonsymmetric with respect to the cavity wall, the scattered
ficld is formed by an infinite number of the ¢-harmonics
traveling in toward the cavity’s centre.

In order to determine the magnitude of these harmonics,
Eyn(inc) in (A1) is first rewritten in terms of global (cavity)
coordinates r, ¢, y. The required conversion is obtained by
using the addition theorem [11] for cylindrical functions. By
using the addition theorem [11], E,,(ine) in (Al) can be
written in the form

- @)
Eyn(inc) = Z edP(6—20) Jp(PnTO)E(%) (I‘nr)
Jo(TorYHS (Trro)

p=—00

- cos(kyny) (A2)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 6/7, JUNE/JULY 1993

where upper row expansion is valid for > rg + a, and lower
row expansion is valid for » < rg — a, H, and J, arc the
pth-order Hankel and Bessel functions, respectively. ,
Since the scattered electric field is given by the sum of
the empty cavity modes, the y—cbmponent Eyn(scaty 18 TEpLE-
sented by '

Eyn(scat) = Z Xanp(Pnr)ejp¢~Cos(kyny)

v p=—oo

(A3)

where X, are expansion coefficients. :
Coefficients X, can be determined from the condition that
the y-component of the total field Eypn(tor) = Eyn(ine) +

Eyn(scaty = 0, on the side cavity wall, and are given by

Hy” (CuR) _
Jp (I‘nR)

—ipdo

Xpn = —Jp(Tnro)

(Ad)

The y-component of the total field produced by the probe
inside the cavity is obtained by combining (A1) and (A4) and
is given by

Eyn(tot) - HcEZ) (Fnrl) + Z XPnJP(F”r)e'jp¢
- c0s(kyny) (A5)
where X,,,, are given by (A4).
The result, shown in (A5), is valid for the case when the
y-component of the electric field varies with y as cos(kyny).
To generalize (A5) for the case of an arbitrary variation of
Ey with y, an infinite sum of the y-harmonics (A5) has to be
used. In this case, Fy is given by

co o0

E, =Y ¢, % HO(Car) + Y Xpndp(Tur)e?|
=0 p=—00
- cos(kyny) (A)
where (), are expansion coefficients, depending on the partic-
ular form of probe and its excitation. The ¢-component of the
magnetic field produced by the probe can be determined from
Maxwell’s equations or alternatively by using the relationship

which holds for TM radial wave harmonics [10]

and is given by

b €on Jk O
Hy = C, = 21—
¢ nz::O B Z,T2 or

' |:H(£2)(Pn7'1)+ Z Xanp(Pnfr)ejp(b COS(kyny).

p=—0c0

(A7)
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Averages of the Electric and Magnetic
Fields Over Cylindrical Surfaces

In the analysis of the radial power divider/combiner, it
is required to extract from expressions (A6) and (A7) the
axially symmetric terms of the y-component of the electric
field and the ¢;- and ¢-components of the magnetic field
at two cylindrical surfaces: 1 = a and r9 = b, respectively
(Fig. 5).

The required axially symmetric terms can be obtained by
applying the addition theorem to the cylindrical functions in
(A6), (A7) and by retaining only symmetiic (constant with
¢) terms in infinite expansions. By using this procedure, the
following approximations of the fields are obtained.

For the cylindrical volume r; < g, inside which the probe
is located, E, is approximated by

oQ

By(ri®a)= Y 2 Co(Qulo(Tury) + HY (Tar))

n=0

- c08(kyny)

where

Qn=— ieo,oJ,?(Fnro)H,?)(rnR)/Jp(r,,R). (A8)

=0

Note that in the expression (A8), the singular nature of the
field is represented by the Hankel function

HP (Tory) .

For I'2 < 0, radial waves produced by the peripheral probes
decay with distance and therefore the expression for (Jn can
be approximated by

Qn = —HS (Tari)

where rq; is the distance between the middle position of the
probe and its first image against the side cavity wall.

The ¢;-component of the magnetic field for points inside
the cylinder r; < a can be approximated by

~ — Eon jk
H¢1(r1=a): Z B E‘I\—Cn
n=0 o+ n

(Qui(ETars) + B (Pary)) cos(kyny)
(49)

The axially symmetric terms for the y-component of the
electric field and the ¢5-component of the magnetic field at the
cylindrical surface ro = b can be obtained by using a similar
procedure to that which used to obtain (A8) and (A9). Note,
however, that as opposed to volume 7y < a, the cylindrical
volume 79 < b is source free, and therefore the fields in this
volume are nonsingular.

It can be shown that the axially symmetric term of the
y-component of the electric field at ro = b is given by

[11]
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; - €on

Ey(ra 2 b) = Z 5 CnQndo(Tnra) cos(kyny) (A10)
n=0

where (J,, is now given by

v

Qn = HEO(Tr12) =Y opd2(Turo0) HD (TnR) [ Jp(Tn R)
p=0

and the axially symmetric term of the ¢g-component of the
magnetic field at ro 2 b is given by

H¢(’I‘2 = b)

(o) .

€on  Jk
nE=0 B anQnJl(FnTZ)COS(kyny)'
(Al1)
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